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Abstract

We present a new method for computing two-dimensional Stokes flow with moving interfaces that respond elastically to
stretching. The interface is moved by semi-Lagrangian contouring: a distance function is introduced on a tree of cells near
the interface, transported by a semi-Lagrangian time step and then used to contour the new interface. The velocity field in a
periodic box is calculated as a potential integral resulting from interfacial and body forces, using a technique based on
Ewald summation with analytically derived local corrections. The interfacial stretching is found from a surprisingly natural
formula. A test problem with an exact solution is constructed and used to verify the speed, accuracy and robustness of the
approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We present a new numerical method for computing time-dependent Stokes flow in two dimensions, with a
moving material interface which responds elastically to stretching. The resulting elastic force creates jumps in
the fluid velocity gradient and pressure at the interface. We move the interface by semi-Lagrangian contouring
[41,40,38,2]. Given the current interface location and velocity, an implicit representation of the interface is
constructed by building a signed distance function. The velocity is extended, and the distance function is trans-
ported by a second-order semi-Lagrangian formula. The updated interface is found by contouring the zero set
of the transported function. The fluid velocity, determined by the interface location and jump conditions, is
computed as a potential integral in a periodic box by Ewald summation, which splits the velocity into two
parts. The smooth part is calculated by a rapidly converging Fourier series, while the local part is approxi-
mated using asymptotic analysis, resulting in a local correction formula. The velocity can be evaluated
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accurately at arbitrary points in the fluid region. The stretching of the interface, which determines the elastic
force, is evolved by a surprisingly simple formula. We derive an exact solution of the full problem, time-peri-
odic, in which the interface is an ellipse of varying eccentricity. Numerical experiments with this exact solution
confirm second-order accuracy. The method is designed so that it can be extended to Navier–Stokes flow and
to three-dimensional flow. The immersed boundary method of Peskin [29] has been used extensively to model
biological problems in Stokes or Navier–Stokes flow with elastic interfaces, and the immersed interface
method is an alternative. These and other methods are discussed below.

We consider fluid flow in a periodic box Q, modeled by Stokes flow, that is, viscous, incompressible flow
with the material derivative in the usual Navier–Stokes equations neglected. Stokes flow is an appropriate
model at small scales, where viscous forces dominate, and is common in biological problems [29]. The velocity
vector vðx; tÞ and pressure pðx; tÞ satisfy the equations
�mDvþrp ¼ F ; r � v ¼ 0 ð1:1Þ

with a force
F ¼ f dC þ F b ð1:2Þ

consisting of an interfacial force f on the interface C and a body force F b defined on the whole box Q. The
interface C is a closed curve (or several of them) consisting of elastic material immersed in the fluid and moving
with the fluid velocity. The interfacial force is defined distributionally by its action on a test function w,
Z

Q
f ðxÞdCðxÞwðxÞdx ¼

Z
C

f ðxðsÞÞwðxðsÞÞds; ð1:3Þ
where s is the arclength parameter on C at the current time. We assume the viscosity is a constant m and the
fluid density q ¼ 1 inside and outside C; the fluid is the same on both sides.

The interfacial force f dC corresponds to a jump in the normal stress across the interface [30],
½T ij�nj ¼ �fi; i ¼ 1; 2 ð1:4Þ

with an implied sum over the repeated index j. Here T ij is the stress tensor
T ij ¼ �pdij þ mðvi;j þ vj;iÞ; ð1:5Þ

square brackets ½�� denote the outside value minus the inside, and the normal vector n points outward. Resolv-
ing this jump into normal and tangential components gives well-known jump conditions [30,26,27] for p and
ov=on:
½p� ¼ f � n; m
ov
on

� �
¼ �ðf � sÞs ð1:6Þ
with viscosity m constant. We suppose the force f at the interface is determined by surface tension and thus has
the form
f ¼ o

os
ðcsÞ; ð1:7Þ
where c is the (variable) coefficient of surface tension and s is the arclength at the current time. (For derivation
from classical force balance arguments, see e.g. [24,21,31].) An equivalent form of Eq. (1.7) is
f ¼ ðoc=osÞs� cjn; ð1:8Þ

where j is the curvature, defined by os=os ¼ �jn. We assume that the interfacial tension comes from the elas-
tic response of the interface material, so that c is a function of the form
c ¼ cðsa � 1Þ: ð1:9Þ

Here a is a material coordinate, equal to arclength in the equilibrium configuration; if the curve is parame-
trized by x ¼ X ða; tÞ, then
sa ¼ os=oa ¼ joX=oaj: ð1:10Þ
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In our examples we suppose c is linear when the stretching is positive:
c ¼ c0ðsa � 1Þþ ¼ c0 maxð0; sa � 1Þ: ð1:11Þ
Our formulation is the same as that of Peskin [29], except that our a corresponds to Peskin’s s, and our f differs
from his by the factor sa. We have included the body force F b to simplify the generation of exact test problems,
as was done in [27].

The rest of the paper is organized as follows. Section 2 describes the evolution of the stretching factor
sa. Cottet and Maitre [10,11] related it to the gradient of a signed distance function transported by the physical
velocity. Eqs. (2.2) and (2.7) give a generalization, valid for any extension of the physical velocity off the inter-
face, which expresses the evolution of sa in a surprisingly simple way. This generalization incorporates the
evolution of sa into the interface motion, without tracking the material coordinate a. Section 3 summarizes
semi-Lagrangian contouring for moving interfaces, and outlines the overall algorithm used in this work.
The velocity determined by the Stokes equations is the singular integral of Eq. (3.1), using the fundamental
solution in a periodic box. Section 4 derives a new Ewald splitting of this periodic fundamental solution, based
on Ewald summation of the Green functions for the Laplacian and biharmonic operators. The integral for the
Stokes velocity then has two parts, one with a smooth kernel and one with a local kernel. In Section 5 approx-
imations are derived for the local contribution from a single layer potential on the curve, or from a body force
which has a jump at the curve.

In Section 6 we construct a test problem with an exact periodic solution for the elastic interface problem
described by Eqs. (1.1), (1.6), (1.7) and (1.11). The interface is an ellipse with time-varying eccentricity. There
is a body force which is discontinuous at the interface. We give the derivation of the test problem in the hope
that it might provide a useful test in other work. We do not know of an exact solution which has been used for
a comparable problem. Section 7 presents our numerical results, including tests with the exact solution which
unambiguously verify the accuracy of the method. In Section 8 possible extensions of this work are discussed.

The most widely used numerical method for biological problems modeled with elastic interfaces in fluids is
the immersed boundary method [29]. The fluid velocity is calculated on a grid, and the force on the curve is
spread to the grid points by replacing it with a sum of smoothed delta functions with a carefully designed
shape. Although the method is generally first-order accurate, a second-order version has been designed for
the case where the interface is replaced by a layer of positive thickness [18]. The accuracy of the method is
also considered in [28,30,45,33,17,20]. In [9] the smoothed delta functions are analytically projected onto
the space of divergence-free vector fields, rather than discretizing before projecting, thus removing an impor-
tant source of error. In the method of [10,11] the location of the curve is found from a signed distance function
advected with the fluid; the smoothed delta function is composed with the signed distance function. The gen-
eral purpose front tracking method introduced in [46] also uses a smoothed delta function.

While the design of the immersed boundary method makes it useful for a variety of realistic problems, in
principle better accuracy should be obtained, at least in some cases, by keeping the interface sharp. The pri-
mary method available with this property, for the same class of problems, is the immersed interface method of
LeVeque and Li [25–27]. The velocity is again computed on a regular grid, using finite differences, but the force
at the interface is incorporated through the immersed interface method: jump terms are added to the difference
operators when the stencil crosses the boundary. The force on the fluid (1.7)–(1.9) due to the curve must be
computed from its configuration. This can be direct if the curve is tracked, although a level set function was
used for the curve motion in [27]. Thorough applications of the immersed interface method to rigid and mov-
ing boundaries were made in [23,47]. High order accuracy requires a number of correction terms for spatial
and temporal derivatives when differences cross the interface. The present work is another approach in which
the interface is kept sharp, but the interfacial curve is moved by the semi-Lagrangian contouring method, the
velocity is computed from the integral representation, and the force is found in a natural way. We expect these
features allow greater flexibility for the treatment of the boundary motion; in particular, the influence of the
force on the nearby fluid is less tied to the grid. Recent work for boundary value problems [7,6] has aspects of
several of these methods. Higher order accuracy has been achieved for some problems with moving fluid inter-
faces by other methods, e.g. the coupled level set, volume-of-fluid method of [43].

Boundary integral methods have been used extensively for Stokes flow in free space, in two or three dimen-
sions, often with different viscosities, to model particles, drops, or bubbles [32,31]. Usually the force is normal
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and proportional to curvature, as in the second term in Eq. (1.8). The integral formulation is natural, since the
free space kernels are known explicitly, and since for Stokes flow the singular integrals for the velocity are
needed only on the moving boundary. In this work we formulate the problem in a periodic box, rather than
free space, since we intend for this approach to be used for Navier–Stokes flow, and boundary conditions are
necessary in that case. Also for Navier–Stokes the velocity has to be found at points on a regular grid in the
fluid region, leading to nearly singular integrals for points near the curve. The present method solves the gen-
eral problem of computing the Stokes velocity at arbitrary points in periodic geometry. The possible extension
from Stokes flow to Navier–Stokes is discussed in Section 8. Other methods have been developed for periodic
Stokes flow; see [15] and references therein.

In [22] the boundary integral method was used for moving boundaries in Stokes flow with equal arclength
parametrization of the interface. With normal force, it was found that the inherent stability requirement for
explicit treatment of the boundary motion was k 6 Ch, where k is the time step and h is the spacing on the
boundary. We expect that similar considerations apply with the general force of Eqs. (1.7) and (1.8). However,
stiffness may be a more serious problem with Navier–Stokes flow and with more general elastic response [44].

The Ewald splitting of the Stokes velocity kernel is akin to regularization of the kernel of a singular or
nearly singular integral with a local correction [4,3,8]. In fact, for the free space Laplacian, Gaussian regular-
ization as in [4,3] gives the same splitting as the Ewald method [36]. Approximations for the local parts of
nearly singular integrals have been derived in [4,3,16,36]. A general approach to Ewald splitting and local cor-
rections for systems of elliptic equations has been developed in [42]. Cortez [8] used regularization of the
Stokes fundamental solution in a variety of Stokes problems, with corrections from [4] added for forces on
curves.

2. The stretching factor

We describe the evolution of the stretching factor which occurs in the expression for the elastic boundary
force. The moving interface C is parametrized by a material coordinate a, corresponding to arclength in the
unstretched position. If s ¼ sða; tÞ is the arclength along the curve at the current time, the stretching factor is
saða; tÞ ¼ jX aða; tÞj, as in Eq. (1.10).

Suppose a neighborhood of the interface is moved by a velocity field V which agrees with the fluid velocity v

on C but may be different elsewhere. Although the exact evolution of sa depends only on the velocity on the
interface, it can be related to the extended velocity V and the signed distance function u near C. Assuming
Cðt0Þ is sufficiently smooth, each point x0 near the interface has the form x0 ¼ X ða; t0Þ þ uðx0; t0Þnða; t0Þ for
some a, where nða; t0Þ is the unit normal vector at X ða; t0Þ, according to the Tubular Neighborhood Theorem,
and the inverse mapping ða;uÞ 7! x0 is differentiable near Cðt0Þ (e.g. see [14, Proposition 0.2]). The Jacobian
determinant detðX a;X uÞ of the mapping ða;uÞ 7! x0 at a point on the curve is �jX ajjnj ¼ �jX aj ¼ �sa, since
X a ? n. The sign depends on the conventions for a;u and n.

Since the neighborhood evolves in time with velocity V, any point x satisfies the ordinary differential equa-
tion dx=dt ¼ V ðx; tÞ with initial condition xðt0; x0Þ ¼ x0 at time t0. Let J ¼ Jðx0; tÞ be the Jacobian determinant
of ox=ox0. We can think of a;u as coordinates for a neighborhood of CðtÞ via the composite function
ða;uÞ 7! x0 7! x. The Jacobian of this composite function for u ¼ 0 is �Js0

a, where s0
a ¼ saða; t0Þ. Thus the

derivative of the inverse function x ¼ ðx1; x2Þ 7! ða;uÞ is the inverse matrix of the derivative of ða;uÞ 7! x,
o1a o2a

o1u o2u

� �
¼ 1

�Js0
a

x2;u �x1;u

�x2;a x1;a

� �
: ð2:1Þ
The second row of this formula implies that jruj ¼ jX aj=ðJs0
aÞ. Solving for sa ¼ jX aj gives sa ¼ jrujJs0

a. For a
material point on the interface, the marker a is preserved by the flow, so
saða; tÞ ¼ jruðx; tÞjJðx0; tÞsaða; t0Þ; x0 ¼ X ða; t0Þ; x ¼ X ða; tÞ: ð2:2Þ

Thus the stretching sa at any time t is determined by its initial value, the mapping induced by V, andru (which in
turn is determined by the induced mapping). Further simplification depends on the choice of V. If V is the phys-
ical velocity v, withr � v � 0, then J � 1, and Eq. (2.2) reduces to saða; tÞ ¼ jruðx; tÞjsaða; t0Þ as in Corollary 2.1
of [11], and Lemma 3.1 of [10]. However, we will use a different extension here.
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For the present work it is convenient to extend the velocity field V ðx; tÞ so that its normal derivative is zero
on the curve at each time t:
ðn � rÞV ðx; tÞ ¼ 0; x 2 CðtÞ: ð2:3Þ

Then, the initial condition jruj � 1 at time t0 on Cðt0Þ guarantees that
jruðx; tÞj ¼ 1; x 2 CðtÞ: ð2:4Þ

This is essentially Lemma A.1 in [48]; it is readily verified by differentiating jr/j2 with respect to time and
using the transport equation ut þ V � ru ¼ 0. In this case Eq. (2.2) for the stretching reduces to
saða; tÞ ¼ Jðx0; tÞsaða; t0Þ: ð2:5Þ

Moreover, the well-known fact
d

dt
Jðx0; tÞ ¼ r � V ðx; tÞJðx0; tÞ ð2:6Þ
and Eq. (2.5) imply the following simple differential stretching law:
d

dt
saða; tÞ ¼ r � V ðx; tÞsaða; tÞ; x ¼ X ða; tÞ: ð2:7Þ
Our algorithm described below updates sa by this law.
For a surface in R3, Eq. (2.2) has a direct analogue with an entirely similar derivation. If the material coor-

dinates are a ¼ ða1; a2Þ, the stretching factor is sa ¼ jðoX=oa1Þ � ðoX=oa2Þj. The 3D analogue of Eq. (2.1) has
as its third row the equation ru ¼ ðX a1

� X a2
Þ=ðJs0

aÞ, leading again to Eq. (2.2).

3. The numerical method

Our algorithm evolves the interface C and the stretching factor sa on the interface. The interface moves with
the velocity field v, determined from Eq. (1.1). The interfacial force in Eqs. (1.7)–(1.9) is determined by sa. We
extend the interfacial velocity along normal lines, rather than sampling the physical velocity. Thus condition
(2.3) holds, and we can use Eq. (2.7) to update sa.

The velocity in Stokes flow has an integral representation derived from potential theory, in terms of the
(periodic) fundamental solution Sij of the Stokes equations [31]. The velocity v ¼ ðv1; v2Þ solving Eq. (1.1)
in the periodic domain Q is
viðyÞ ¼
Z

C

X2

j¼1

Sijðy � xðsÞÞfjðsÞdsþ
Z

Q

X2

j¼1

Sijðy � xÞF bjðxÞdx: ð3:1Þ
This representation is derived in Section 4, and an efficient new method for computing the velocity is derived in
Sections 4 and 5. The velocity on C suffices to evolve C, but the velocity field can be evaluated at any desired
point by integration.

Given an interfacial velocity v, the interface is evolved by the four-step semi-Lagrangian contouring method
developed in [41,40,37,39,38,2].

3.1. Implicit representation

A quadtree data structure called the distance tree, consisting of square cells with pointers to nearby elements
of C, is built. In the course of this construction, a cell is split if the concentric triple intersects C, the signed dis-
tance function u is efficiently computed on the vertices of the tree, and data is stored to permit efficient evalu-
ation of u anywhere in the domain. The tree and u values provide an efficient implicit representation of the
interface C (see Section 1.3 of [40], and for more detail in an earlier version, Sections 3 and 4 of [37]).

3.2. Velocity extension

Given the interfacial velocity v on C and the distance tree, define the extension V on the vertices x (and
Steiner points) of the distance tree by



J.T. Beale, J. Strain / Journal of Computational Physics 227 (2008) 3896–3920 3901
V ðxÞ ¼ vðyÞ; ð3:2Þ

where y is a nearest point on C to x. Then define V at arbitrary points by interpolation from the tree vertices
(and Steiner points). This ‘‘numerical Whitney extension” provides an efficient representation of the extended
velocity V (see [40, Section 2]).

3.3. Semi-Lagrangian evolution

Evolve u (and implicitly the interface) along characteristics of the extended velocity V, from time t to t þ k,
by the approximate semi-Lagrangian formula
wð~xÞ ¼ uð~x� kV ð~xÞÞ � uð~x; t þ kÞ: ð3:3Þ

The predicted interface eC at time t þ k is then the zero set of w (for a second-order predictor–corrector version,
see [40, Section 1.2], or steps (5), (10), and (11) in the algorithm below).

3.4. Contouring

Given the approximate implicit interface representation w, find its zero set eC by the following contouring
algorithm: Build a new distance tree as if w were a signed distance function, by splitting each cell whose edge
length exceeds the minimum value of w on the cell. Triangulate the resulting tree and find the exact polygonal
zero set of the piecewise linear interpolant to the values of w at the vertices of the triangulation. Refine the zero
set by moving and adding vertices to reduce jwj at each interface vertex below a user-specified tolerance (see
[41, Section 2]).

Our algorithm for Stokes flow extends the semi-Lagrangian contouring scheme to evolve the function
q � sa as well as the interface. (A similar semi-Lagrangian approach to evolving interface data has been devel-
oped in [2], in the context of realistic three-dimensional computer graphics.) One time step of our algorithm
evolves C and q from time t to t þ k by the following substeps:

(1) Input at time t: the interface C, the signed distance function u to C, the distance tree T, and the stretching
factor q on C.

(2) Interfacial force computation: Build a local uniform mesh covering a tubular neighborhood of C. Com-
pute the normal n (or tangent s) and curvature j by high-order ENO differentiation of u on the local
mesh. Use Eqs. (1.7) and (1.8) to compute the force f on the interface C.

(3) Interfacial velocity evaluation: From f on C and body force F bðtÞ, find the interfacial velocity v on C
from Eq. (3.1).

(4) Velocity extension: Extend v to V on the distance tree T built for the interface C.
(5) Contouring: Find eC as the set of ~x with uðxÞ ¼ 0, where x ¼ ~x� kV ð~xÞ.
(6) Distancing: Build new distance tree eT and compute ~u, the signed distance function to eC, on eT .
(7) Stretching update: Compute r � V ðxÞ for x 2 C via a local uniform mesh near C. Update q to

~qð~xÞ ¼ ð1þ kr � V ðxÞÞqðxÞ for ~x on eC. (This completes the predictor half-cycle.)
(8) Interfacial force computation: Construct a local uniform mesh near eC. Compute the new normal, tan-

gent, curvature and the force ~f determined by ~q on the predicted interface eC.
(9) Interfacial velocity evaluation: From ~f on eC and a body force F bðt þ kÞ, find the interfacial velocity ~v oneC from Eq. (3.1).

(10) Averaged velocity extension: Extend ~v to eV on the distance tree eT built for the curve eC. Construct the
second-order averaged velocity on eT

V ð�xÞ ¼ 1

2
eV ð�xÞ þ 1

2
V ð�x� kV ð�xÞÞ: ð3:4Þ
(11) Contouring: Find C as the set of �x with uðxÞ ¼ 0, where x ¼ �x� kV ð�xÞ.
(12) Distancing: Build a new tree T and compute �u, the signed distance function to C, on T .
(13) Stretching update: For x 2 C find r � V ðxÞ via a local uniform mesh near C. For �x 2 C find r � eV ð�xÞ via a

local uniform mesh near C and update q by the second-order formula
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�qð�xÞ ¼ qðxÞ þ 1

2
kr � V ðxÞqðxÞ þ 1

2
kr � eV ð�xÞ�qð�xÞ ð3:5Þ

with the last term locally implicit, or equivalently

�qð�xÞ ¼
1þ 1

2
kr � V ðxÞ

1� 1
2
kr � eV ð�xÞ qðxÞ: ð3:6Þ

Here x ¼ �x� kV ð�xÞ as in step (11). (This ends the complete predictor–corrector cycle.)
4. Ewald summation for Stokes flow

Ewald summation is a family of classical techniques for fast summation of periodic Green functions for
elliptic operators. Techniques for specific operators such as the Laplacian and Stokes operators have been
derived in many classical works [13,19] and applied in many modern computations [1,36,34], while general
techniques for elliptic systems have been developed in [42]. We present a new Ewald summation technique
for the Stokes equations. It leads to a new local correction scheme remarkably similar to several previous
schemes which have been derived from a completely different point of view [4].

4.1. The steady Stokes equations

The steady Stokes equations on a d-dimensional periodic box Q ¼ ½�p; p�d 	 Rd for the velocity v : Q! Rd

and pressure p : Q! R are
�mDvþrp ¼ F ; r � v ¼ 0; ð4:1Þ

where F is a force with mean zero (for consistency). Applying the divergence operator yields
Dp ¼ r � F ¼ ojF j, and substituting back in gives a biharmonic equation
mD2vi ¼ oiojF j � DF i; ð4:2Þ

where oi ¼ o=oxi and repeated indices imply summation. Let
DG ¼ d� 1=jQj;
Z

Q
Gdx ¼ 0; ð4:3Þ
define the periodic mean-zero Green function for the Laplace equation and
DB ¼ G;
Z

Q
Bdx ¼ 0; ð4:4Þ
define the periodic mean-zero Green function for the biharmonic Eq. (4.2). Here jQj ¼ ð2pÞd is the box volume
and d is the usual Dirac delta function. Then
mvi ¼ oiojBHF j � DBHF i; ð4:5Þ

where H denotes the usual convolution of periodic functions:
f HgðxÞ ¼
Z

Q
f ðx� yÞgðyÞdy: ð4:6Þ
We now seek convenient formulas for G, B and oiojB.

4.2. Ewald summation for the Laplacian

The obvious Fourier series
GðxÞ ¼ �ð2pÞ�d
X
k 6¼0

1

jkj2
eik�x ð4:7Þ
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for G does not converge quickly enough to be useful in computation. Ewald summation expresses G as the sum
of two rapidly converging series, one smooth and one singular but localized. The technique can be derived in a
variety of ways which suggest various extensions. The following derivation appears to be new. Let Kt be the
fundamental solution of the periodic heat equation given in two different forms as
KtðxÞ ¼ ð2pÞ�d
X

k

e�tjkj2 eik�x ¼ ð4ptÞ�d=2
X
m2Zd

e�r2
m=4t; ð4:8Þ
where rm ¼ jx� 2pmj. As t! 0, KtðxÞ ! K0ðxÞ ¼ dðxÞ, a periodic delta function. Note that Kt has mean 1=jQj
for all t P 0. Fix a smoothing parameter r > 0 and write
G ¼ GHðd� 1=jQjÞ ¼ GHðKr � 1=jQjÞ þ GHðd� KrÞ; ð4:9Þ

where the fundamental theorem of calculus, the heat equation, and the definition of G give
GHðd� KrÞ ¼ GHðK0 � KrÞ ¼ �GH

Z r

0

otKt dt ¼ �GH

Z r

0

DKt dt ¼ �
Z r

0

Kt dt þ r=jQj: ð4:10Þ
The integral is sharply peaked in space, so we collect up global terms and local terms separately to write G as
the sum G ¼ GF þ GL of Fourier and local parts. Here GF is defined as
GF ¼ GHðKr � 1=jQjÞ þ r=jQj; ð4:11Þ

so that
GFðxÞ ¼ ð2pÞ�d r�
X
k 6¼0

e�rjkj2

jkj2
eik�x

 !
: ð4:12Þ
The k ¼ 0 term in the Fourier series for GF is nonzero. This does not matter when convolving with a function
F which has mean zero, but will make a difference when evaluating pointwise values of the full Green function.

By integration, we find the complementary local part,
GLðxÞ ¼ �
Z r

0

KtðxÞdt ¼ �
X

m

Z r

0

ð4ptÞ�d=2e�r2
m=4t dt ¼ � 1

4
p�d=2

X
m

r2�d
m C d=2� 1;

r2
m

4r

� �
: ð4:13Þ
Here Cða; zÞ ¼
R1

z e�ssa�1 ds is the usual incomplete gamma function, which is appropriately singular as z! 0
but decays exponentially as z!1. Thus we can omit the images 2pm, m 6¼ 0, whenever x is well inside the box
Q.

4.3. Biharmonic Ewald summation by squaring

The straightforward approach to Ewald summation for the biharmonic equation requires the inverse Fou-
rier transform of e�tjkj4 , which is difficult to evaluate. Thus we consider two different approaches, squaring and
subtraction, both based on the Ewald splitting of the Green function G for the Laplacian. The present work
employs subtraction. In the squaring approach, we observe that
B ¼ GHG ¼ ðGF þ GLÞHðGF þ GLÞ ¼ GF
HðGF þ 2GLÞ þ GL

HGL � BF þ BL; ð4:14Þ

where (since convolution multiplies Fourier coefficients)
BFðxÞ ¼ ð2pÞ�d �r2 þ
X
k 6¼0

e�rjkj2ð2� e�rjkj2Þ
jkj4

eik�x

 !
ð4:15Þ
and
BLðxÞ ¼
Z r

0

Z r

0

ðKtHKsÞðxÞdsdt ¼
Z r

0

Z r

0

KtþsðxÞdsdt; ð4:16Þ
since the heat kernel defines a semigroup. Consider GLðx; rÞ as a function of the smoothing parameter r, (as
well as x) and let Hðx; tÞ ¼

R t
0

GLðx; rÞdr be an antiderivative; then
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BLðxÞ ¼
Z r

0

otHðx; t þ rÞ � otHðx; tÞdt ¼ Hð2rÞ � 2HðrÞ; ð4:17Þ
where a tedious calculation gives
HðtÞ ¼ 1

16pd=2

X
m

r4�d
m

4t
r2

m

C d=2� 1;
r2

m

4t

� �
þ C d=2� 2;

r2
m

4t

� �� �
: ð4:18Þ
The occurrence of four separate incomplete gamma functions in expression (4.18) is computationally incon-
venient and complicates local correction formulas such as Eq. (5.34) below, so we also employ another ap-
proach which leads to simpler formulae.

4.4. Biharmonic Ewald summation by subtraction

We also derive a more convenient approach in which the local part of the biharmonic Ewald sum is defined
by modifying the free-space Green function in a way that preserves the local singularity. We take the two-
dimensional case d ¼ 2 for simplicity. The free-space Green function for the Laplace equation is
G1ðxÞ ¼
1

2p
log jxj ð4:19Þ
and the corresponding free-space Green function for the biharmonic is
B1ðxÞ ¼
1

8p
jxj2ðlog jxj � 1Þ: ð4:20Þ
The derivation of harmonic Ewald summation and the singularity
Cð0; zÞ ¼
Z 1

z
e�s ds

s

 � log z as z! 0 ð4:21Þ
suggests that we define
BLðxÞ ¼ � 1

16p

X
m2Z2

r2
mC 0;

r2
m

4r

� �
ð4:22Þ
to provide a periodic rapidly-decaying function which matches the local singularity of B. We then use the Pois-
son summation formula to evaluate the smooth remainder BF ¼ B� BL as a Fourier series. Neither BF nor BL

have mean zero, but their sum B does. Reversing the computation of GLðxÞ shows that
BLðxÞ ¼ � 1

4

Z r

0

X
m

r2
mð4ptÞ�1e�r2

m=4t dt ¼ � 1

4p

Z r

0

t
d

dt

X
m

e�r2
m=4t dt

¼ �ð2pÞ�2
X

k

Z r

0

t
d

dt
ðte�tjkj2Þdt eik�x; ð4:23Þ
where we have integrated by parts and used the equality (4.8), a special case of the Poisson summation formula
[12]. Then, since BF ¼ B� BL and
BðxÞ ¼ ð2pÞ�2
X
k 6¼0

1

jkj4
eik�x; ð4:24Þ
we obtain the following rapidly-converging Fourier series representation:
BFðxÞ ¼ ð2pÞ�2 r2

2
þ
X
k 6¼0

1

jkj4
ð1þ rjkj2 þ r2jkj4Þe�rjkj2 eik�x

 !
: ð4:25Þ
Its second partial derivatives are given by
oiojBFðxÞ ¼ �ð2pÞ�2
X
k 6¼0

kikj

jkj4
ð1þ rjkj2 þ r2jkj4Þe�rjkj2 eik�x: ð4:26Þ
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4.5. Application to the Stokes velocity

The decomposition B ¼ BF þ BL above leads to a corresponding decomposition of the operator producing
the Stokes velocity into a smooth part and a local part. We write Eq. (4.5) in the form
mvi ¼ RjSijHF j ð4:27Þ

with
Sij ¼ oiojB� dijDB: ð4:28Þ

It is natural to write Sij as the sum
Sij ¼ SF
ij þ SL

ij ð4:29Þ
with
SF
ij ¼ oiojBF � dijDBF; SL

ij ¼ oiojBL � dijDBL: ð4:30Þ
The smooth part SF has the Fourier representation
SF
ijðxÞ ¼ ð2pÞ�2

X
k 6¼0

sijðkÞeik�x;

sijðkÞ ¼
dijjkj2 � kikj

jkj4
ð1þ rjkj2 þ r2jkj4Þe�rjkj2 :

ð4:31Þ
The local part will be written explicitly in the next section.

5. Computation of the Stokes velocity

In the last section the velocity v, determined by the Stokes Eq. (4.1) with given force F, was written as the
convolution
mvi ¼
X

j

SijHF j: ð5:1Þ
The velocity kernel S given by Eq. (4.28) was decomposed into a smooth part and a local part, S ¼ SF þ SL.
The two parts will be treated separately. For convenience we write the velocity as v ¼ vF þ vL.

5.1. The Fourier part

The velocity term vF contributed by the smooth part of the kernel is computed as a Fourier series. The
method is similar to that of [36]. Writing F in a Fourier series,
F ðxÞ ¼
X

k

F̂ ðkÞeikx; F̂ ðkÞ ¼ ð2pÞ�2

Z
Q

F ðxÞe�ikx dx ð5:2Þ
and using the Fourier representation (4.30) of SF, we have
mvF
i ðxÞ ¼

X
j

X
k

sijðkÞF̂ jðkÞeikx: ð5:3Þ
Because of the exponential decay of sijðkÞ in Eq. (4.31), we can truncate the series. We choose a truncation
index p and sum over k ¼ ðk1; k2Þ with jk1j; jk2j 6 p. The error EF due to this truncation is at most
jEF j 6
ffiffiffiffiffiffi
2p
p e�p2r

p3r3=2
ð5:4Þ
(see [36, p. 253]). The error bound (5.4) depends only on p2r and decays rapidly as p2r!1. For example,
p2r ¼ 20 gives an error less than 10�10.
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If the force F is on the curve, in the form F ¼ f dC, the Fourier coefficient of F is an integral over the curve
F̂ ðkÞ ¼ ð2pÞ�2

Z
C

f ðxÞe�ikx dsðxÞ: ð5:5Þ
We compute these coefficients by a quadrature rule over the line segments of which C is constructed (compare
[36, p. 255]). If F is a body force, we use a trapezoidal rule for the integral (5.5). If F has a jump discontinuity
at C, we approximate C by a line segment in each grid square it cuts and choose some value of F on the correct
side for each part of the square. The resulting Fourier coefficients are second-order accurate in the grid spac-
ing. The complexity of the computation is cubic in the grid spacing, since each interface element affects every
Fourier coefficient; thus optimal complexity requires geometric nonuniform FFT techniques [35].

5.2. The local part

We derive approximations to the contribution vL valid for small r. This is possible because the kernel SL

decays like a Gaussian away from the singularity. It is convenient to replace the Ewald parameter r with a new
parameter d, defined by
d2 ¼ 4r: ð5:6Þ

It is the radius of smoothing in GF and BF and the length scale for the decay in SL. We obtain an expansion in
powers of d. Similar expansions have been used in [16,36,4,3]. The analytical technique here is close to that in
[4].

We ignore the periodic reflections in the formulas (4.13) and (4.22) for GL and BL, presuming that the
sources are well inside the periodic boundary. Thus, with r ¼ jxj,
GLðrÞ � � 1

4p
Cð0; r2=d2Þ; BLðrÞ � � r2

16p
Cð0; r2=d2Þ: ð5:7Þ
Corresponding to BL, the local part of the Stokes velocity is vL
i ¼ RjS

L
ijHF j with
SL
ij ¼ oiojBL � dijDBL: ð5:8Þ
To obtain detailed expressions we start with derivatives of GL, BL:
orG
L ¼ 1

2pr
e�r2=d2

; ð5:9Þ

ojBL ¼ 1

4
2xjG

L þ xj

2p
e�r2=d2

� �
ð5:10Þ
and with q ¼ r=d,
oiojBL ¼ dij
1

2
GL þ e�q2

8p

 !
þ xixj

4pr2
ð1� q2Þe�q2 ð5:11Þ
and in particular
DBL ¼
X

j

o2
j BL ¼ GL þ 1

2p
1� q2

2

� �
e�q2

: ð5:12Þ
Now substituting Eqs. (5.11) and (5.12) in Eq. (4.28) we can write SL explicitly as
SL
ij ¼ �

dij

2
GL þ dije

�q2 � 3

8p
þ q2

4p

� �
þ xixj

4pr2
1� q2
	 


e�q2

: ð5:13Þ
To proceed further we consider separately the two types of force.

5.3. The local integral over a curve

Consider the local part vL of the velocity induced by a force F ¼ f dC on a curve C. At an arbitrary point y
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mvL
i ðyÞ ¼

Z
C

X
j

SL
ijðy � xðsÞÞfjðsÞds; ð5:14Þ
where s is the arclength parameter on the curve. We will derive an approximation valid to Oðd3Þ. Since SL is
localized we are only concerned with y near the curve C and the part of the integral with xðsÞ near y. For such y

we can write y ¼ xðs0Þ þ bnðs0Þ where xðs0Þ is a point on C and nðs0Þ is the unit normal at that point. For sim-
plicity we assume s0 ¼ 0. We write s ¼ x0ð0Þ for the unit tangent, and n ¼ nð0Þ for the normal, denoting the s-
derivative with 0. We have x00ð0Þ ¼ �jn, where j is the curvature at xð0Þ (see Fig. 1).

We use Taylor expansions in s and b to identify the largest terms in Eq. (5.14). We begin with
xðsÞ � y ¼ ss� 1

2
js2 þ b

� �
nþOðs3Þ: ð5:15Þ
Let r2 ¼ jxðsÞ � yj2 and R2 ¼ s2 þ b2. Then
r2 ¼ s2 þ b2 þ jbs2 þOðR4Þ: ð5:16Þ

We now introduce a new variable n ¼ nðs; bÞ defined by r2 ¼ n2 þ b2 to simplify the dependence of the inte-
grand on r. Solving for n in Eq. (5.16) gives n2 ¼ ð1þ jbÞs2 þOðR4Þ or
n ¼ 1þ 1

2
jb

� �
sþOðR3Þ: ð5:17Þ
We can now solve for s ¼ sðn; bÞ, obtaining
s ¼ 1� 1

2
jb

� �
nþOðr3Þ ð5:18Þ
and
ds
dn
¼ 1� 1

2
jbþOðr2Þ: ð5:19Þ
Now substituting for s in terms of n in Eq. (5.15) gives
xðsÞ � y ¼ 1� 1

2
jb

� �
ns� 1

2
jn2 þ b

� �
nþOðr3Þ ð5:20Þ
and similarly for f
f ¼ f ð0Þ þ f 0ð0ÞsþOðs2Þ ¼ f ð0Þ þ f 0ð0ÞnþOðr2Þ: ð5:21Þ

In evaluating various parts of the integral (5.14) we use the substitution n ¼ df and b ¼ db, noting that

q ¼ r=d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ b2

q
. Four integrals related to the Gaussian will be needed. If
Ip ¼
Z 1

�1

e�ðf
2þb2Þ

f2 þ b2
fp df; J p ¼

Z 1

�1
e�ðf

2þb2Þfp df; ð5:22Þ
Fig. 1. Integral over the curve evaluated at y.
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then
I0 ¼ ðp=jbjÞerfcjbj; I2 ¼
ffiffiffi
p
p

e�b2 � pjbjerfcjbj; ð5:23Þ
J 0 ¼

ffiffiffi
p
p

e�b2

; J 2 ¼ ð
ffiffiffi
p
p

=2Þe�b2

: ð5:24Þ
We begin with the integral of GLfi, corresponding to the part of Eq. (5.14) coming from the first term of Eq.
(5.13)
Z

GLðr=dÞfi
ds
dn

dn ¼
Z

GLðr=dÞ f0i þ f 00in
	 


ð1� 1

2
jbÞ þOðr2Þ

� �
dn

¼ 1� 1

2
jb

� �
f0i

Z
GLðr=dÞdnþ odd termþ remainder: ð5:25Þ
We evaluate the last integral as follows:
Z
GLðr=dÞdn ¼ d

Z
GLðqÞdf ¼ �d

Z
oGL

of
fdf ¼ �d

Z
oGL

oq
f
q
� fdf ¼ �d

Z
1

2pq
e�q2 f2

q
df

¼ � d
2p

I2: ð5:26Þ
The term in Eq. (5.25) with f 00in is odd in n and integrates to 0. The Oðr2Þ remainder in Eq. (5.25) is a sum of
terms, each a monomial of degree 2 in n; b times a bounded function, and the integral is Oðd � d2Þ ¼ Oðd3Þ.
Thus
A1i �
Z

GLðr=dÞfi ds ¼ � d
2p

1� 1

2
jb

� �
I2f0i þOðd3Þ: ð5:27Þ
Looking at the next terms in Eq. (5.13) we see in a similar but simpler way that
A2i �
Z

e�q2

fi dn ¼ d 1� 1

2
jb

� �
J 0f0i þOðd3Þ; ð5:28Þ

A3i �
Z

e�q2

q2fi dn ¼ d 1� 1

2
jb

� �
ðJ 2 þ b2J 0Þf0i þOðd3Þ: ð5:29Þ
To handle the remaining part of SL, we note that
X
j

ðxj � yjÞfj ¼ 1� 1

2
jb

� �
fsnþ f 0sn

2
	 


� 1

2
jn2 þ b

� �
fn þ f 0nn
	 


þOðr3Þ; ð5:30Þ
where fs ¼
P

jf0jsj; fn ¼
P

jf0jnj and similarly f 0s ; f
0
n are tangential and normal components of f 00. Then
X

j

ðxi � yiÞðxj � yjÞfj
ds
dn
¼ ð1� 3

2
jbÞn2fssi þ b2 � 1

2
jb3 þ bjn2

� �
fnni � bn2 f 0nsi þ f 0sni

	 

þ odd termsþOðr4Þ ð5:31Þ
and proceeding as with the earlier terms we find, with Mp ¼ Ip � J p,
A4i �
Z X

j

ðxi � yiÞðxj � yjÞ
r2

ð1� q2Þe�q2

fj dn

¼ dð1� 3

2
jbÞM2fssi þ db2 1� 1

2
jb

� �
M0fnni þ d2bjM2fnni � d2bM2ðf 0nsi þ f 0sniÞ þOðd3Þ: ð5:32Þ
We can now substitute Eqs. (5.27), (5.28), (5.29) and (5.32) into Eqs. (5.13) and (5.14) to get an expression for
the local part of the velocity,
mvL
i ¼ �

1

2
A1i �

3

8p
A2i þ

1

4p
A3i þ

1

4p
A4i þOðd3Þ: ð5:33Þ
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It is convenient to combine the first three terms and rewrite this as
4pmvL
i ¼ d 1� 1

2
jb

� �
I2 � ð1� b2ÞJ 0

	 

f0i þ A4i þOðd3Þ: ð5:34Þ
In the special case when b ¼ 0, i.e. y is on the curve, this expression simplifies to
4pmvL
i ¼

1

2
d
ffiffiffi
p
p

fssi þOðd3Þ: ð5:35Þ
5.4. The local integral of a body force

Next we approximate the local velocity resulting from a body force F which may be discontinuous across a
curve C. We first suppose that F is nonzero only inside the domain D bounded by C. In place of Eq. (5.14) we
have the integral
mvL
i ðyÞ ¼

Z
D

X
j

SL
ijðy � xÞF jðxÞdx: ð5:36Þ
If y is away from C, it can be seen that this local velocity is Oðd4Þ because of the form (5.8) expressing SL in
terms of second derivatives of BL, the fact that BL in Eq. (5.7) is d2 times a function of q ¼ r=d, and the rapid
decay of BL. Thus we consider a point y near the curve. For simplicity we assume y is along a vertical normal
line to the curve at distance b, and we set y ¼ ð0; 0Þ without loss of generality. Thus we suppose the curve has
the form
x2 ¼ Y ðx1Þ ¼ �bþ 1

2
Y 000x2

1 þOðx3
1Þ; ð5:37Þ
so that the curve passes through ð0;�bÞ with normal ð0; 1Þ (see Fig. 2).
The integrand is significant only for x near 0. Assuming b is small, we will introduce new coordinates

n ¼ ðn1; n2Þ so that the exterior x2 > Y ðx1Þ corresponds to n2 > �b and the radial distance is preserved, that is,
n2
1 þ n2

2 ¼ x2
1 þ x2

2 � r2: ð5:38Þ

To do this, given x, we first define n2 as
n2 ¼ x2 � Y ðx1Þ � b ¼ x2 �
1

2
Y 000x2

1 þOðx3
1Þ; ð5:39Þ
so that Eq. (5.38) reduces to n2
1 ¼ x2

1 þ 2n2ðY þ bÞ þ ðY þ bÞ2. Since ðY þ bÞ=x2
1 is smooth, this equation defines

n1, with the convention that n1 and x1 have the same sign. We have n2
1 ¼ x2

1ðY 000n2 þOðxÞÞ or
n1 ¼ 1þ 1

2
Y 000n2

� �
x1 þOðx2Þ: ð5:40Þ
From the approximations (5.39) and (5.40) it follows that
Fig. 2. Integral over the region inside the curve.



3910 J.T. Beale, J. Strain / Journal of Computational Physics 227 (2008) 3896–3920
x ¼ nþOðr2Þ; J � det
ox
on

� �
¼ 1þOðrÞ: ð5:41Þ
We now convert the integral (5.36) to the new variables,
mvL
i ¼

Z �b

�1

Z 1

�1

X
j

SL
ijðxÞF jðxÞJ dn1 dn2 ð5:42Þ
and note that the dependence on r=d is unaffected by the conversion. We will evaluate to Oðd3Þ with crude
approximations, but it will be clear that further terms are of the order neglected. Thus we replace F jðxÞ with
F 0j ¼ F jð0; 0Þ and J with 1. We ignore the distinction between x and n to get
mvL
i �

Z �b

�1

Z 1

�1

X
j

SL
ijðxÞF 0j dx: ð5:43Þ
For i ¼ 2 we can use Eq. (5.8) to write the integrand as o21BLF 01 � o11BLF 02; since this is an x1-derivative, the
integral is zero. For i ¼ 1, the integrand is o12BLF 02 � o22BLF 01; the first term again integrates to zero, and for
the same reason we can replace the second term by �ðDBLÞF 01. We now have
mvL
1 � �F 01

Z �b

�1

Z 1

�1
DBL _x: ð5:44Þ
One term in DBL is GL. We rewrite the x1-integral of this term as
Z 1

�1
GLðx1; x2Þdx1 ¼ �

Z 1

�1
x1

dGL

dx1

dx1 ¼ �
Z 1

�1

x2
1

2pr2
e�r2=d2

dx1: ð5:45Þ
Substituting from Eq. (5.12) and combining terms we have
mvL
1 �

F 01

2p

Z �b

�1

Z 1

�1

�x2
2

x2
1 þ x2

2

þ 1

2
ðx2

1 þ x2
2Þ

� �
e�r2=d2

dx1 dx2: ð5:46Þ
We now rescale the variables by ðx1; x2Þ 7! ðdx1; dx2Þ and set b ¼ b=d, so that
mvL
1 �

d2F 01

2p

Z �b

�1

Z 1

�1

�x2
2

x2
1 þ x2

2

þ 1

2
ðx2

1 þ x2
2Þ

� �
e�r2

dx1 dx2: ð5:47Þ
We note that the integrand is even in x2 and the integral from 0 to1 is zero. Thus for b > 0, the integral from
�1 to �b is minus that from 0 to b, and for b < 0, the integral is equal to that from 0 to jbj. Evaluating the
integral we find
mvL
1 � �

d2F 01

8p
b

ffiffiffi
p
p

e�b2 � 2pjbjerfcjbj
� �

: ð5:48Þ
The term just found was Oðd2Þ because of the rescaling of the area form. If we considered further terms we
would have additional factors of n, which after rescaling would contribute terms to the integral of order
dp � d2 with p P 1. Returning to general coordinates, we summarize the conclusion for the local velocity
(5.36): For a point y ¼ xþ bn near the curve, where n is the normal at the nearest point x on the curve to y,
mvL ¼ � d2

8p
b

ffiffiffi
p
p

e�b2 � 2pjbjerfcjbj
� �

F ssþOðd3Þ; ð5:49Þ
where b ¼ b=d, s is the tangent at x, and F s is the tangential component of F at x.
Finally, we consider the case of an integral over the full periodic domain but with a discontinuity in F at the

curve C. In the analysis above, if our integral were outside D rather than inside, the y-integral would have been
from �b to1 rather than �1 to �b. The result would be the same except for a change of sign. Thus, for an
integral with discontinuity across C, the result would be the difference of two terms as in Eq. (5.49)
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mvL ¼ d2

8p
b

ffiffiffi
p
p

e�b2 � 2pjbjerfcjbj
� �

½F s�sþOðd3Þ; ð5:50Þ
where ½F s� means the outside value minus the inside of F s.

6. An exact solution with elastic force

We construct an exact solution in a 2p-periodic box Q, for which the elastic interface is a moving ellipse
x ¼ aðtÞ cos h; y ¼ bðtÞ sin h; ð6:1Þ

parametrized by h, so at any time the ellipse is
x2

a2
þ y2

b2
¼ 1: ð6:2Þ
The area must remain constant since the flow is incompressible, and we take aðtÞbðtÞ ¼ 1 to preserve the area.
To be specific, we take
aðtÞ ¼ 1þ 1

4
cos xt ð6:3Þ
with some frequency x so that 3=4 6 a 6 5=4 and 4=5 6 b 6 4=3, and thus the ellipse stays well within the
central half-square �p=2 6 x; y 6 p=2 of Q. We assume that the points move along rays h ¼ constant, so that
the velocity of a point on the ellipse is
ða0 cos h; b0 sin hÞ: ð6:4Þ

We note for later use that
r � ds=dh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin h2 þ b2 cos h2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4x2 þ a4y2

q
; ð6:5Þ
where s ¼ arclength. Furthermore, the unit tangent and normal vectors to this curve are
s ¼ ð�a2y; b2xÞ=r; n ¼ ðb2x; a2yÞ=r; ð6:6Þ

os=os ¼ �jn and the curvature is given by j ¼ r�3.

The next step is to find a velocity field which gives the motion specified for the ellipse. We choose a stream
function wð0Þ and then define the velocity as ðwð0Þy ;�wð0Þx Þ, so that the divergence is zero. Note that a0=a ¼ �b0=b
since ab ¼ 1. For �p=2 6 x; y 6 p=2 we define
wð0Þ ¼ a0

a
xy; ð6:7Þ
so that
vð0Þ ¼ a0

a
x;

b0

b
y

� �
ð6:8Þ
in this smaller region, matching the velocity already specified on the curve. Later we extend wð0Þ to the whole
box Q so that it is 2p-periodic in each variable. We note for later use that Dvð0Þ ¼ 0.

We suppose that the equilibrium state of the membrane is the circle of radius 1=2, with total length p, so
that a ¼ h=2 is a material coordinate. Then ds=da ¼ ðds=dhÞðdh=daÞ ¼ 2r. The force f on the curve is given in
terms of s; n, and sa ¼ ds=da by
f ¼ os½ðsa � 1Þs� ¼ 2osðshÞs� ð2sh � 1Þjn ¼ fssþ fnn ð6:9Þ

with
fs ¼ 2osðshÞ; f n ¼ �ð2sh � 1Þj ð6:10Þ

and since r ¼ sh,



3912 J.T. Beale, J. Strain / Journal of Computational Physics 227 (2008) 3896–3920
fs ¼ 2shh=r ¼ 2r�2ða2 � b2Þxy; ð6:11Þ
fn ¼ �r�3ð2r� 1Þ ¼ �2r�2 þ r�3: ð6:12Þ
We must choose v and p with the jump conditions (outside minus inside)
f ¼ ½p�n� m
ov
on

� �
ð6:13Þ
or, separating tangent and normal components,
ov
on

� �
¼ �fss; ½p� ¼ fn: ð6:14Þ
To create tangential force on the boundary, we will add a term to the velocity inside the ellipse, giving the
requisite jump in normal velocity. Since the velocity must be continuous, the new term must be zero on the
curve. We again define it through a stream function. We define q by
q2 ¼ x2

a2
þ y2

b2
; ð6:15Þ
so that the ellipse corresponds to q ¼ 1. Let g be any function defined near the ellipse. Define
wð1Þ ¼ gðq2 � 1Þ2; vð1Þ ¼ ðwð1Þy ;�wð1Þx Þ: ð6:16Þ
For any choice of g, the velocity will be continuous with a jump in ov=on depending on g. We find
Dðq2 � 1Þ2 ¼ 8r2. Since w ¼ 0 and rw ¼ 0 on the ellipse we get
ovð1Þ

on
¼ �gðDðq2 � 1Þ2Þs ¼ �8r2gs: ð6:17Þ
Looking at fs above, we need �8r2g ¼ fs on the ellipse, or
g ¼ � 1

4r4
ða2 � b2Þ sin h cos h ¼ �r�4ða2 � b2Þ xy

4ab
ð6:18Þ
on the ellipse. We will extend r positively to the interior q < 1 and then define, for q < 1,
wð1Þ ¼ �r�4ða2 � b2Þ xy
4ab
ðq2 � 1Þ2: ð6:19Þ
Similarly, we define p inside as the extension of �fn ¼ r�3ð2r� 1Þ, with p ¼ 0 outside, so that the jump con-
dition for pressure in Eq. (6.14) is satisfied. We have now defined the velocity and pressure so that the ellipse
moves with the fluid velocity and the jump conditions (6.14) hold.

To extend r to q < 1, keeping it positive, we define r2 inside as
r2 ¼ 1þ ða2 � 1Þ y2

b2
þ ðb2 � 1Þ x2

a2
: ð6:20Þ
Then r2 ! 1 as ðx; yÞ ! ð0; 0Þ. Also
r2 ¼ 1� q2 þ a2 y2

b2
þ b2 x2

a2
ð6:21Þ
and for q ¼ 1 this agrees with Eq. (6.5) since ab ¼ 1. We check r is strictly positive: Choose c0 > 0 so that
a; b P c0 at each time. (For our example, c0 ¼ 3=4.) Then
r2 P 1� q2 þ c0q
2 ¼ 1� ð1� c0Þq2 P c0 ð6:22Þ
for q2
6 1, as desired.

We need third derivatives of wð1Þ, since vð1Þ ¼ ðwð1Þy ;�wð1Þx Þ and the body force depends on Dvð1Þ. To record
various derivatives, we write
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wð1Þ ¼ C0xyQR; C0 ¼ ðb2 � a2Þ=ð4abÞ; ð6:23Þ
Q ¼ r�4; R ¼ ðq2 � 1Þ2 ð6:24Þ
with r extended to q 6 1 as in Eqs. (6.20) and (6.21). For convenience write
q2 ¼ b2x2 þ a2y2; r2 ¼ 1þ b2ðb2 � 1Þx2 þ a2ða2 � 1Þy2 ð6:25Þ

or
r2 ¼ 1þ Bx2 þ Ay2; B ¼ b2ðb2 � 1Þ; A ¼ a2ða2 � 1Þ ð6:26Þ

Then
Rx ¼ 4ðq2 � 1Þb2x; Ry ¼ 4ðq2 � 1Þa2y; Rxy ¼ 8xy; ð6:27Þ
Rxx ¼ 8b4x2 þ 4ðq2 � 1Þb2; Ryy ¼ 8a4y2 þ 4ðq2 � 1Þa2; ð6:28Þ
DRx ¼ 8xð1þ 3b4Þ; DRy ¼ 8yð1þ 3a4Þ; ð6:29Þ
Qx ¼ �4r�6Bx; Qy ¼ �4r�6Ay; Qxy ¼ 24r�8ABxy; ð6:30Þ
Qxx ¼ 4r�8Bð5Bx2 � 1� Ay2Þ; Qyy ¼ 4r�8Að5Ay2 � 1� Bx2Þ; ð6:31Þ
DQx ¼ 24r�10Bxð3B� 5B2x2 þ 3ABy2 þ Aþ ABx2 � 7A2y2Þ; ð6:32Þ
DQy ¼ 24r�10Ayð3A� 5A2y2 þ 3ABx2 þ Bþ ABy2 � 7B2x2Þ: ð6:33Þ
Using derivatives of R and Q we can write
vð1Þ1 ¼ wð1Þy ¼ C0xQRþ C0xyðQyRþ QRyÞ; ð6:34Þ

vð1Þ2 ¼ �wð1Þx ¼ �C0yQR� C0xyðQxRþ QRxÞ; ð6:35Þ
Dvð1Þ1 =C0 ¼ Dwð1Þy =C0

¼ 2QRx þ 2QxRþ 2yðQxyRþ QxRy þ QRxy þ QyRxÞ þ xð6QyRy þ 3QRyy þ 3QyyRþ QxxR

þ QRxx þ 2QxRxÞ þ xyððDQyÞRþ 3QyyRy þ 3QyRyy þ QDRy þ QxxRy þ 2QxyRx þ 2QxRxy þ QyRxxÞ;
ð6:36Þ

�Dvð1Þ2 =C0 ¼ Dwð1Þx =C0

¼ 2QRy þ 2QyRþ 2xðQxyRþ QyRx þ QRxy þ QxRyÞ þ yð6QxRx þ 3QRxx þ 3QxxRþ QyyRþ QRyy

þ 2QyRyÞ þ xyððDQxÞRþ 3QxxRx þ 3QxRxx þ QDRx þ QyyRx þ 2QxyRy þ 2QyRxy þ QxRyyÞ:
ð6:37Þ
With these pieces in place, we can write explicitly the velocity v, pressure p, and body forces, inside and outside
the ellipse. Inside we use Eqs. (6.8), (6.34) and (6.35) to define
v ¼ vð0Þ þ vð1Þ; q < 1 ð6:38Þ

and p as stated before, using the extended r in Eq. (6.20),
p ¼ r�3ð2r� 1Þ; q < 1; ð6:39Þ

so that
rp ¼ r�5ð3� 4rÞðBx;AyÞ; q < 1: ð6:40Þ

To define v outside the ellipse, we use a periodic extension of fðxÞ ¼ x for jxj 6 p=2, extended to jxj 6 p, as
defined below. Outside the ellipse we define, in place of (6.7),
wð0Þðx; yÞ ¼ a0

a
fðxÞfðyÞ ð6:41Þ
so that the outside velocity is
v ¼ ðwð0Þy ;�wð0Þx Þ ¼
a0

a
ðfðxÞf0ðyÞ;�f0ðxÞfðyÞÞ; q > 1: ð6:42Þ
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We take the pressure to be zero outside,
p ¼ 0; q > 1: ð6:43Þ

To use this example as a test problem, we need to give the nonhomogeneous terms, or body force, as well as
the force on the boundary, to compute v and p, and compare with the exact ones above. The Stokes Eq. (1.1)
with force (1.2) F ¼ f dC þ F b where F b is the body force (interior and exterior) and f dC is the force on the
boundary. The boundary force is f ¼ fnnþ fss, with n, s given by Eq. (6.8) and fn; fs given by Eq. (6.10)
or Eqs. (6.11) and (6.12). As for the body force F b, we have with the choices above
F b ¼ �mDvð1Þ þ rp; q < 1 ð6:44Þ

and
F b ¼ �mðDwð0Þy ;�Dwð0Þx Þ; q > 1: ð6:45Þ
Inside, the components of F b are given by Eqs. (6.36), (6.37) and (6.40), taking into account the factors C0 and
�m. Outside they are
F b1 ¼ �m
a0

a
f00ðxÞf0ðyÞ þ fðxÞf000ðyÞð Þ; q > 1; ð6:46Þ

F b2 ¼ m
a0

a
f000ðxÞfðyÞ þ f0ðxÞf00ðyÞð Þ; q > 1: ð6:47Þ
Finally we give the definition of f. We first construct an odd polynomial qðxÞ on ½�p=2; p=2�, so that after
translation f will be odd about x ¼ �p. We specify q0ðp=2Þ ¼ 1; q00ðp=2Þ ¼ 0; q000ðp=2Þ ¼ 0. With
qðxÞ ¼ c1xþ c2x3 þ c3x5 þ c4x7; ð6:48Þ

we get
c1 ¼ �
27

8
; c2 ¼

35

2p2
; c3 ¼ �

42

p4
; c4 ¼

40

p6
: ð6:49Þ
Now define
fðxÞ ¼ x; �p=2 6 x 6 p=2; ð6:50Þ
fðxÞ ¼ qðx� pÞ; p=2 6 x 6 p; ð6:51Þ
fðxÞ ¼ qðxþ pÞ; �p 6 x 6 �p=2: ð6:52Þ
We have defined f so that f000 is continuous but not differentiable at x ¼ �p=2. Thus the body force F b has the
same property.

7. Numerical results

The algorithm of Section 3 was implemented in the C programming language and tested on a collection of
interfacial Stokes flows, including the exact elastic elliptical solution derived in Section 6 and shown in Fig. 3.
We present quantitative evidence of its robustness and second-order accuracy. Our current version is subop-
timally efficient since the p2 Fourier coefficients of the body force are computed in Oðp2NCÞ time when the
interface contains NC elements, so we do not report CPU times. Once geometric nonuniform FFT techniques
[35] are incorporated, the computational cost for the velocity on the interface and the interface motion at one
time step will be about OðNCÞ. To compute the velocity field on a grid at one time will add a cost proportional
to the number of grid points. The overall complexity of our algorithm will then be optimal, and large-scale
simulations will be practical.

Table 1 presents 1-norm errors
EC ¼
1

NC

XNC

j¼1

juðcj; tÞj ð7:1Þ



Fig. 3. Moving elastic elliptical interfaces and 7-level quadtrees which organize them for efficient distance evaluation.

Table 1
Interface and velocity errors EC and Ev after one oscillation of an elastic ellipse

L D S p r EC Ev r EC Ev r EC Ev

6 2 22 15 .128 .02200 .07180 .064 .01610 .05240 .0160 .01040 .02130
20 .064 .00675 .02380 .032 .00420 .01280 .0080 .00484 .01440
30 .032 .00394 .01210 .016 .00390 .01050 .0040 .00387 .01380

7 3 44 20 .064 .00495 .02260 .032 .00299 .01140 .0080 .00237 .01120
30 .032 .00213 .01020 .016 .00154 .00640 .0040 .00174 .00932
40 .016 .00154 .00327 .008 .00155 .00455 .0020 .00160 .00646

8 4 88 30 .032 .00196 .00956 .016 .00125 .00557 .0040 .00116 .00838
40 .016 .00098 .00261 .008 .00082 .00310 .0020 .00079 .00502
60 .008 .00071 .00158 .004 .00072 .00257 .0010 .00039 .00288

9 5 176 40 .016 .00089 .00245 .008 .00054 .00265 .0020 .00047 .00430
60 .008 .00037 .00085 .004 .00036 .00127 .0010 .00035 .00180
80 .004 .00036 .00097 .002 .00036 .00139 .0005 .00037 .00160
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and
Table
Veloci

L

6

7

8

9

Ev ¼
1

N 2

XN

i¼1

XN

j¼1

kvij � ~vijk ð7:2Þ
in the interface location and fluid velocity respectively, after S time steps up to the final time T ¼ 11 corre-
sponding to one full cycle of the elliptical motion. Here C is the computed interface, composed of line seg-
ments with NC endpoints cj;u is the signed distance to the exact interface at time T, and vij and ~vij are the
exact and computed fluid velocities at points ði; jÞ of a uniform N � N grid. An L-level distance tree was em-
ployed as a basis for contouring, with D steps of subgrid resolution to tolerance � ¼ 2�D. The velocity evalu-
ation used p � p Fourier modes, while three different smoothing parameters r, r=2 and r=8 were tested, and
shown in successive columns in Table 1, to ensure convergence of the local correction. Since the velocity is of
order unity, the absolute error is reported. Errors were also measured in the maximum norm; for the velocity,
the maximum and 1-norm errors were about the same, while the maximum interface errors were about a factor
of two or three larger. The interface errors measured at segment midpoints were also within ten percent of the
reported errors. The area p of the ellipse is conserved by the exact flow. In these tests the area did not vary
much over time; for the bottom row in Table 1 the error in the computed area was about :003, or.1%, regard-
less of r.

Table 1 supports several conclusions about the convergence rate of our methods as a function of the time step
k ¼ T=S, the average interface resolution h ¼ jCj=NC � 2�L�D, and the velocity resolution control parameters p

and r.We can verify second-order convergence in k by selecting entries in which the Oðp2Þ and OðrÞ quadrature
and Ewald summation errors decrease faster than Oðk2 þ h2Þ. For example, as we proceed down the first column
with the largest r, the interface location error decreases by factors of approximately four from .02200 through
.00495 and .00098 to .00036, while the velocity error decreases similarly from .07180 through .02260 and .00261
to .00097, as S doubles from 22 to 176, p doubles from 15 to 80, and Lþ D increases from 8 to 14. Factors near
four can be seen more clearly by proceeding diagonally, e.g. with S ¼ 44; p ¼ 20; r ¼ :064; S ¼ 88;
p ¼ 30; r ¼ :016; S ¼ 176; p ¼ 80; r ¼ :0005. Thus second-order convergence in time is verified. The asymptotic
order of convergence in the Ewald parameters p and r is more complicated, because it is often dominated by the
other discretization errors. Thus we report velocity errors Ev at the initial time t ¼ 0, where the time discretization
error is irrelevant, in Table 2. The Oðd3Þ convergence predicted by Eq. (5.50) is evident in the approximate factor
of eight decrease in the first column of errors from 0.0417 through .0184 and .00259 to .000328 as r ¼ d2=4 is
reduced by factors of four from .128 to .004.

We also verified topological robustness and numerical accuracy on a variety of more complicated flows,
with samples shown in Figs. 4 and 5. Detailed convergence studies by parameter refinement also support
the conclusions above. In addition, Fig. 4 demonstrates that the connectivity of the initial interface is often
2
ty errors Ev at initial time t ¼ 0

D p r Ev r Ev r Ev r Ev

2 15 .128 .0417 .064 .0227 .032 .0141 .0160 .013
20 .064 .0178 .032 .00997 .016 .0074 .0080 .00926
30 .032 .00848 .016 .0048 .008 .0057 .0040 .00654

3 20 .064 .0184 .032 .0101 .016 .00738 .0080 .00919
30 .032 .00864 .016 .00485 .008 .00573 .0040 .00661
40 .016 .00233 .008 .00237 .004 .00344 .0020 .00381

4 30 .032 .00923 .016 .00525 .008 .00605 .0040 .00698
40 .016 .00259 .008 .0025 .004 .00358 .0020 .00396
60 .008 .000884 .004 .000682 .002 .00107 .0010 .00115

5 40 .016 .0026 .008 .00254 .004 .00362 .0020 .004
60 .008 .000883 .004 .000688 .002 .00108 .0010 .00116
80 .004 .000328 .002 .000675 .001 .000862 .0005 .00085



Fig. 4. Complex elastic interfaces evolving under Stokes flow.
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preserved under sufficiently accurate computations of Stokes flow. The initial interface has three holes, which
are preserved as they become circular in the Stokes flow.

Fig. 5 demonstrates the effect of a body force
F bðx1; x2Þ ¼
1

4
� sin 2x2; cos 2x1ð Þ ð7:3Þ
simulating a shearing flow around the box center. Interfaces in such flows are subject to competing influences,
since the Stokes flow driven by curvature of the interface tends to circularize the interfaces, while the shearing
body force tends to spin them into complex shapes. In this example, the initial complex interfaces rapidly be-
come circular under Stokes flow, but then collide and merge into a larger circular bubble. Thus connectivity is
not always conserved in this model. It appears that the higher-order derivatives involved in the interface forces
fC take effect over shorter time scales than the body forces F b, and therefore the smoothing effect of the sin-
gular Stokes flow dominates the interfacial evolution when computed with sufficient accuracy. Here, Table 3
shows that area is eventually conserved to about 1% accuracy, a reasonable result for the change in connec-
tivity of this singular interface.



Fig. 5. Interfacial Stokes flow with a simulated shearing force.
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8. Future directions

The algorithm used in this work extends directly to three dimensions. If the force on a moving surface is
determined by stretching of area, the description of the evolution in Section 2 applies directly. The Stokes
velocity resulting from the interfacial force is a single layer potential on the surface with 1=r singularity.
The Ewald splitting applies to the fundamental solution, and the treatment of the Fourier part of the integral
is the same [36]. The local part can be approximated as in Section 5; a method of this type for surface layer
potentials for the Laplacian was developed in [3] and a general approach constructed in [42]. Semi-Lagrangian
contouring in three dimensions has been implemented in an open-source code [2].

We have assumed that the viscosity is the same on both sides of the interface. Boundary integral methods
have been used for Stokes flow with different viscosities (e.g. see [31,32]). The calculation of the velocity deter-
mined by the force on the moving boundary requires the solution of an integral equation on the boundary as a
preliminary step (e.g. see [31,32,5]). The present method should extend to the case of differing viscosities in this
way.



Table 3
Area A enclosed by two merging propellers at the initial and final times

S L D p A0 r A r A r A

88 6 2 30 1.299362 .016 1.08076 .008 1.15143 .0040 1.14558
176 7 3 40 1.331076 .008 1.22488 .004 1.24753 .0020 1.24803
352 8 4 60 1.326567 .004 1.28719 .002 1.29007 .0010 1.29088
704 9 5 80 1.327284 .002 1.30807 .001 1.30923 .0005 1.31007
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The Stokes Eq. (1.1) describe fluid flow only for very low Reynolds number. In modeling flows with higher
Reynolds numbers, Eq. (1.1) should be replaced by the Navier–Stokes equations
vt þ v � rvþrp ¼ mDvþ f dC; r � v ¼ 0: ð8:1Þ

We expect the present method can be extended to Navier–Stokes flow with an elastic interface. One way to
proceed begins with the observation that the jump conditions (1.6) are the same in the two cases. At each time
we can write the Navier–Stokes velocity v determined by Eqs. (8.1) as a sum v ¼ vs þ vr where vs is the Stokes
velocity determined by Eq. (1.1). Then vr is C1 at the interface; the jump in the normal derivative has been
removed. The evolution equation for the regular part vr is similar to Eq. (8.1), without the interfacial force,
but with a forcing term determined by vs. Since the singular interfacial force has been removed to the Stokes
term vs, it should be possible to solve for the smoother velocity vr accurately on a regular grid. With this addi-
tional step, the method presented here for Stokes flow could be used to solve the Navier–Stokes Eq. (8.1).
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